Orthogonality derivation of polarization state based on Poincaré sphere

نویسندگان

چکیده

To make full use of the polarization information electromagnetic waves for polarimetric sensor array, we derive orthogonality expression state based on Poincaré sphere (PS) representation. The ellipticity angle and orientation ellipse are used to describe point surface sphere. derivation shows that two points characterize a pair orthogonal states distributed in opposite positions. Compared with conventional linear circular state, flexible elliptical would result maximum separation co-polarization cross-polarization components, thereby enhancing accuracy measurement. simulation displays correctness theoretical derivation, which could provide basis further configuration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere.

For the first time to the best of our knowledge, we derive expressions for coordinates of the trajectory on the Poincaré sphere that represent polarization evolution in an arbitrary beam of completely polarized light. Our work substantially extends the mapping function of the Poincaré sphere, and opens up new possibilities for its use in optics. In particular, the obtained expressions allow one...

متن کامل

Non-normal Derivation and Orthogonality

The main purpose of this note is to characterize the operators T ∈ B(H) which are orthogonal (in the sense of James) to the range of a generalized derivation for non-normal operators A,B ∈ B(H).

متن کامل

Symmetries Shared by the Poincaré Group and the Poincaré Sphere

Henri Poincaré formulated the mathematics of Lorentz transformations, known as the Poincaré group. He also formulated the Poincaré sphere for polarization optics. It is shown that these two mathematical instruments can be derived from the two-by-two representations of the Lorentz group. Wigner’s little groups for internal space-time symmetries are studied in detail. While the particle mass is a...

متن کامل

Signal representation on the angular Poincaré sphere, based on second-order moments.

Based on the analysis of second-order moments, a generalized canonical representation of a two-dimensional optical signal is proposed, which is associated with the angular Poincaré sphere. Vortex-free (or zero-twist) optical beams arise on the equator of this sphere, while beams with a maximum vorticity (or maximum twist) are located at the poles. An easy way is shown how the latitude on the sp...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2021

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/1978/1/012015